Math 2050, summary of Week 6

1. CAUCHY SEQUENCE

Motivation: How to determine the convergence without discussion on the precise value of limit?

Definition 1.1. A sequence $\{x_n\}_{n=1}^{\infty}$ is said to be Cauchy if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that for all m, n > N,

$$|x_m - x_n| < \varepsilon.$$

In other word, instead of controlling the oscillation around the "limit", we control the oscillation between elements!

Expectation: Cauchy sequence is equivalent to convergent sequence!

Recall that a convergent sequence is Necessarily bounded (Bounded Theorem)! And bounded sequence are "almost" convergent by Bolzano-Weierstrass Theorem. We first have:

Lemma 1.1. A Cauchy sequence is bounded.

(The proof is essentially the same with Bounded Theorem).

Theorem 1.1 (Cauchy Criterion). A sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} is Cauchy sequence if and only if it is convergent.

Proof. If $\{x_n\}$ is convergent, then there is $x \in \mathbb{R}$ such that for all $\varepsilon > 0$, there is N such that for all n > N,

$$|x_n - x| < \varepsilon/2.$$

Hence, for all m, n > N, we have $|x_m - x_n| \le |x_n - x| + |x_m - x| < \varepsilon$. Therefore it is Cauchy. This proved a easier direction.

For the opposite direction, suppose the sequence is Cauchy. Then it is bounded, hence there is $\{x_{n_k}\}_{k=1}^{\infty}$ such that $x_{n_k} \to x$ for some $x \in \mathbb{R}$ as $k \to +\infty$. Using Cauchy assumption, for all $\varepsilon > 0$, there is N such that for all m, n > N,

$$|x_m - x_n| < \varepsilon/2.$$

By replacing m by m_k with k > N, we have for all k, n > N,

$$|x_n - x_{m_k}| < \varepsilon/2$$

Since this is true for all k > N, we may let $k \to +\infty$ to show

$$|x_n - x| \le \varepsilon/2$$

for all n > N. This completes the proof.

 $\mathbf{2}$